Search results for "quantum geometric information"
showing 3 items of 3 documents
Symmetric logarithmic derivative of Fermionic Gaussian states
2018
In this article we derive a closed form expression for the symmetric logarithmic derivative of Fermionic Gaussian states. This provides a direct way of computing the quantum Fisher Information for Fermionic Gaussian states. Applications ranges from quantum Metrology with thermal states and non-equilibrium steady states with Fermionic many-body systems.
Incompatibility in Multi-Parameter Quantum Metrology with Fermionic Gaussian States
2019
In this article we derive a closed form expression for the incompatibility condition in multi-parameter quantum metrology when the reference states are Fermionic Gaussian states. Together with the quantum Fisher information, the knowledge of the compatibility condition provides a way of designing optimal measurement strategies for multi-parameter quantum estimation. Applications range from quantum metrology with thermal states to non-equilibrium steady states with Fermionic and spin systems.
Geometry of quantum phase transitions
2020
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas i…